Contribution from the Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604, and Department of Chemistry and Materials Research Center, Northwestern University, Evanston, Illinois 60208

Polarized Specular Reflectance Spectra of the Partially Oxidized Phthalocyanines Cu(pc)I and H2(pc)I Compared with Those of Co(pc)I and Ni(pc)I: Metal-Based Charge-Transfer Transitions in One-Dimensional Conductors

Dean E. Rende,^{1a} Michael D. Heagy,^{1a} William B. Heuer,^{1a,b} Kwangkyoung Liou,^{1c} Julia A. Thompson,^{1c} Brian M. Hoffman,*,^{1c} and Ronald L. Musselman*,^{1a}

Received June 21, 1991

Polarized single-crystal ultraviolet and visible specular reflectance spectra and **Kramers-Kronig-transformed** absorbance spectra of Cu(pc)I and H₂(pc)I allow clarification of metal-based charge-transfer transitions, especially when compared with earlier results on Ni(pc)I and **Co(pc)I** and recent calculations. Earlier out of plane assignments have been confirmed, and some modified assignments are proposed for in-plane transitions, including the well-known Soret transition.

Phthalocyanines **(pc's)** have long been of interest because of their intense electronic transitions in the visible region, $2-5$ which render them useful as textile dyes, and their similarity to porphyrins, which has led to their use as models for electronic structure in biological system^.^^^ Several reviews of **pc** spectra and electronic structure studies are available.^{2-4,6-8} In the solid state the large planar molecules stack closely enough for interaction between planes,⁹⁻¹¹ enabling them to serve as thin-film conductors and electrode media. $12-14$ When partially oxidized, they arrange into straight stacks of macrocycles (with the interstitial channels containing the oxidant), becoming one-dimensional conductors or semiconductors.¹⁵⁻²⁰ Conduction in iodinated metallo-Conduction in iodinated metallophthalocyanines (M(pc)I's) appears to occur through different routes depending upon the central metal: when M = Ni, **Cu,** or $H₂$, conductivity is associated with a ligand-based band formed by the overlap of the π orbitals,^{17,18,20} and when M = Co, the electronic conductivity is along the metal spine through a band formed by the d_{z^2} orbitals.¹⁹ We recently reported on the UVvisible reflectance spectra of $Co(pc)I$ and $Ni(pc)I$ in which two formed by the d₂ orbitals.¹⁹ We recently reported on the UV-
visible reflectance spectra of Co(pc)I and Ni(pc)I in which two
new charge-transfer transitions were observed: $a_{1g}(d_{2}) \rightarrow a_{2u}$
(a) \pm 3 and h (c) \pm visible reflectance spectra of Co(pc)1 and Ni(pc)1 in which two
new charge-transfer transitions were observed: $a_{1g}(d_{z^2}) \rightarrow a_{2u}$
 (p_z, π^*) and $b_{2u}(\pi) \rightarrow b_{1g}(d_{x^2-y^2})$.²¹ The $a_{1g} \rightarrow a_{2u}$ transition had
not been was suggested by our Kramers-Kronig transformation of our UV-vis data into absorption values because of slight structure appearing on a band previously attributed to the $\bar{1}$ ⁻ ion in the crystal.^{17,19} Deconvolution of this band using structurally similar I_3 ⁻ salts as a guide revealed an $a_{1g} \rightarrow a_{2u}$ peak to the red of the $1₃$ transition in both the Ni and Co cases. These metal-to-ligand and ligand-to-metal charge-transfer bands are of interest because they give information about energies of predominantly metal orbitals relative to predominantly ligand orbitals. These orbital energies ultimately determine the site of partial oxidation and hence the conduction mechanisms in these compounds.

Our interest in **M(pc)I's** is an **outgrowth** of an ongoing program to understand the spectroscopy of one-dimensional molecular crystals containing closely interacting planar transition-metal complexes.²²⁻²⁶ Simpler systems such as tetracyanoplatinates^{23,27} and bis(dimethylglyoximato)nickel²⁸ show strong red shifts and dramatic intensity increases in transitions involving orbitals related to one-dimensional conductivity upon crystallization from solution and upon formation of more closely stacked salts or exertion of high pressures.^{29,30} Since neither band formation³¹ nor exciton formation 32 alone appears to be sufficient to describe these red shifts, we are studying a wide range of planar complexes having close interactions in order to determine the origin of the shifts. Identification of metal-related transitions in $M(pc)I's$ is thus an important part of this larger study.

The set of metals Co, Ni, and Cu provides a trend in energies of metal-based orbitals that assists in identifying metal-related transitions within complexes of this type. In this work, we wished to add Cu(pc)I to our earlier work on Co(pc)I and Ni(pc)I.²¹

However, the most prominent metal-related transitions in Cu(pc)I fall at the same energies as I_3 ⁻ transitions extracted earlier via Gaussian deconvolution (vide infra). In order to permit unambiguous identification of the I_3^- transitions in these partially oxidized phthalocyanines, we have therefore also made a parallel study of the metal-free $H_2(pc)I$.

Both $H_2(pc)I$ and Cu(pc)I are isomorphous with Ni(pc)I and Co(pc)I and exhibit metal-like conductivity mediated by ligandbased π bands as demonstrated by EPR, magnetic susceptibility, thermoelectric power, and temperature-dependent conductivity

- (a) Franklin & Marshall College. (b) Camille and Henry Dreyfus (1) Teaching/Research Fellow. Current address: Chemistry Department, United States Naval Academy, Annapolis, MD 21402. (c) Northwestern University.
- Lever, A. B. P. *Adv. Inorg. Radiochem.* 1965, *7, 28.*
- Sayer, P.; Gouterman, M.; Connell, C. R. *Acc. Chem. Res.* 1982, *15,*
- 73. Hoffman, B. M.; Ibers, J. A. *Acc. Chem. Res.* 1983, 16, 15. Chen, I. *J.* Mol. *Specrrosc.* 1967, 23, 131.
-
- Gouterman, M. *J.* Mol. *Spectrosc.* 1961, 6, 138.
- Gouterman, M. In *The Porphyrins;* Dolphin, D., Ed.; Academic **Press:** (7) New York, 1978; pp 1-166.
- Nyokong, T.; Zbigniew, G.; Stillman, M. *Inorg. Chem.* 1987,26,1087. (8)
- Robertson, J. M.; Woodward, I. J. *Chem. Soc.* 1938,219. (9)
- (10) Williams, G. A.; Figgis, B. N.; Mason, R.; Mason, **S.** A,; Fielding, P. E. J. *Chem.* **Soc.,** *Dalron Trans.* 1980, 1688.
- Mason, R.; Williams, G. A,; Fielding, P. E. *J. Chem. SOC., Dalron Trans.* 1979, 676.
- Lever, A. B. P.; Pickens, **S.** R.; Minor, P. C.; Licoccia, **S.;** Ramaswamy, (12) B. **S.;** Magnell, K. *J. Am. Chem. SOC.* 1981, 103,6800.
- Wiemhofer, H. D.; Schmeisser, D.; Gopel, W. *Solid Stare tonics* **1990,** 40-1, 421.
- Gould, R. D.; Hassan, A. K. *Thin Solid Films* 1990, 193, 895.
- Palmer, **S.** M.; Stanton, J. L.; Hoffman, B. M.; Ibers, J. A. *Inorg. Chem.* 1986, 25, 2296.
- Schramm, C. J.; Scaringe, R. P.; Stojakovic, D. R.; Hoffman, B. M.; Ibers, J. A.; Marks, T. J. *J. Am. Chem.* **SOC.** 1980, 102,6702.
- Martinsen, J.; Palmer, **S.** M.; Tanaka, J.; Greene, R. C.; Hoffman, B. M. *Phys. Rev. B* 1984, 30, 6269.
- Inabe, T.; Marks, T. J.; Burton, R. L.; Lyding, J. W.; McCarthy, W. J.; Kannewurf, C. R. *Solid Srore Commun.* 1985, *54,* **501.**
- Martinsen, J.; Stanton, J. L.; Greene, R. L.; Tanaka, J.; Hoffman, B. M.; Ibers, J. A. J. *Am. Chem. Soc.* 1985,107,6915. Ogawa, M. Y.; Martinsen, J.; Palmer, **S.** M.; Stanton, J. **L.;** Tanaka,
- J.; Greene, R. L.; Hoffman, B. M.; Iben, J. A. *J. Am. Chem. Soc.* 1987, 109, 1115
- (21) Heagy, M. D.; Rende, D. E.; Shaffer, G. W.; Wolfe, B. M.; Liou, K.; Hoffman, B. M.; Musselman, R. **L.** *Inorg. Chem.* 1989, 28, 283. Musselman, R. **L.;** Williams, J. W. *J. Chem.* **SOC..** *Chem. Commun.*
- 1977, 186.
- Anex, B. G.; Musselman, R. L. *J. Phys. Chem.* 1980, 84, 883. Musselman, **R.** L.; Stexher, L. C.; Watkins, *S.* F. *Inorg. Chem.* **1980,**
- 19, 3400.
- Musselman, R. L.; Cornelius, J. B.; Trapp, R. M. *Inorg. Chem.* 1981, 20, 1931.
Musselman, R. L.; Anex, B. G. J. Phys. Chem. 1987, 91, 4460.
Moreau-Colin, M. L. Struct. Bonding 1972, 10, 167.
Anex, B. G.; Krist, F. K. J. Am. Chem. Soc. 1967, 89, 6114.
Gliemann, G.; Yersin, H. Struct. Bonding
-
-
-
-
-
-

0020-166919211331-0352\$03.00/0 *0* 1992 American Chemical Society

^{*}To whom correspondence should be addressed.

Figure 1. Polarized specular reflectance of $H_2(pc)I: (-)$ electric vector parallel to needle (out-of-plane); (- - -) electric vector perpendicular to needle (in-plane).

studies.^{18,20,33} We report here on the polarized electronic reflectance and derived absorbance spectra of $H_2(pc)I$ and of Cu-(pc)I and assign transitions **on** the basis of the behavior (or absence) of metal-related transitions in the H₂-, Co-, Ni-, and $Cu(pc)$ I series and upon more recent calculations, $34-37$ including the established "four-orbital model" for porphyrin systems, $6.7,38$ and initial results from self-consistent-field density of states *(DOS)* calculations **on** several metalloporphyrins including Co-, Ni-, and $Cu(pc).$ ³⁷ (Recent DV-X α calculations³⁹ on several M(pc)'s including **Co(pc)** will not be used since the calculations were optimized for ground-state properties and thus differ somewhat from the DV-X α -DOS calculations³⁷ emphasizing transition energies.) The calculations have indicated a **need** for reassignment of two of the in-plane transitions in Co and Ni(pc)I, and the experimental results on Cu- and $H_2(pc)$ I have allowed assignment of an additional out-of-plane transition in Co- and Ni(pc)I.

Experimental Section

Single crystals of $H_2(pc)I$ and $Cu(pc)I$ were prepared as described elsewhere,^{18,33} and specimens $\sim 0.030 \times 0.030 \times 1$ mm were selected for study.

Polarized specular reflectance spectra were obtained on an instrument based on a concept by Anex.⁴⁰ The instrument is essentially a grating microspectrophotometer consisting of tungsten-halogen and xenon arc light sources, an Instruments SA HR320 0.32-m computer-controllable grating monochromator, a Glan-Thompson polarizer, a double-beam reflecting microscope, and a photomultiplier detector. Signal detection is through two Princeton Applied Research 186A lock-in amplifiers, and instrument control resides on an Apple **IIe** computer. Data for each spectral point are collected until the sample mean has a 99% probability of being within **1%** of the population mean. The data are then uploaded to a Hewlett-Packard **3000** computer for processing. Reflectance is measured relative to an NIST standard second-surface aluminum mirror, and Kramers-Kronig transformation of the average of at least three reflectance spectra is performed to obtain standard absorbance values.

Spectra were obtained from natural elongated faces of $H_2(pc)I$ and Cu(pc)I with an illumination spot size of \sim 25 μ m having the electric vector of the plane-polarized light aligned parallel to the needle *(c)* axis for 'out-of-plane" spectra and perpendicular to the needle axis for "inplane" spectra. The straight stacking of the macrocycles^{18,20} provided the same molecular projections on all elongated faces. While H_2 (pc) for-

- **(33)** Thompson, **J.** A.; Murata, K.; McGhee, E. M.; Stanton, J. L.; Rende, D. E.; Broderick, W. E.; Musselman, R. L.; Hoffman, B. M.; Ibers, J. A. **To be** submitted for publication in *Inorg. Chem.*
- **(34)** Kutzler, **F. W.;** Ellis, D. E. J. *Chem. Phys.* **1986,** *84,* **1033.**
- **(35)** Henriksson, A.; Sundbom, M. *Theoret. Chim. Acra* **1972, 27, 213.**
- **(36)** Henriksson, A.; Roos, B.; Sundbom, M. *Theoret. Chim. Acta* **1972,27, 303.**
- **(37)** Liang, **X.; Flora, S.;** Ellis, D. E.; Hoffman, B. **M.;** Musselman, R. L. *J. Chem. Phys.* **1991, 95,403.**
- **(38)** Wang, M.-Y. R.; Hoffman, B. M. *J. Am. Chem. Soc.* **1984,106,4235.**
- **(39)** Reynolds, **P.** A.; Figgis, B. N. *Inorg. Chem.* **1991,** *30,* **2294-2300. (40)** Anex, **B.** G. Mol. *Cryst.* **1966, 1, 1.**

Figure 2. Polarized specular reflectance of Cu (pc)I: $(-)$ electric vector parallel to needle (out-of-plane); (- - -) electric vector perpendicular to needle (in-plane).

Figure 3. (a) Out-of-plane and (b) in-plane absorbance from specular reflectance of $H_2(pc)I: (-)$ experimental, $(-)$ Gaussian deconvolution; **(-e)** residual baseline.

mally has D_{2h} symmetry and thus should provide two distinct in-plane spectra,⁴¹ in \overline{H}_2 (pc)I, the macrocycles are alternately rotated 40°,¹⁸ which prevents the observation of in plane differences. Reflectances from beyond experimentally accessible regions necessary for Kramers-Kronig analyses were estimated for the far ultraviolet in order to give zero absorbance in the resultant transformation where vapor state absorbance is zero. Reflections were used with maxima of 10% and 30% at \sim 51 \times 10^3 cm⁻¹ for H₂(pc)I and Cu(pc)I, respectively. Low-energy values were based upon IR reflectance from $H_2(pc)I^{18}$ for the H_2 and similar systems^{17,19} for the Cu complex. Deconvolution was carried out with an

⁽⁴¹⁾ Anex, **B.** G. J. *Am. Chem. Soc.* **1964,** *86,* **5026.**

Figure 4. (a) Out-of-plane and (b) in-plane absorbance from specular reflectance of $Cu(pc)I: (-)$ experimental, $(--)$ deconvolution, $(-)$ residual baseline.

interactive Gaussian and Lorentzian analysis program on the **HP3000** computer.

Results and Discussion

The polarized specular reflectance spectra for $H_2(pc)I$ and $Cu(pc)$ I are shown in Figures 1 and 2, respectively, and the corresponding Kramers-Kronig transformations along with deconvolutions are shown in Figures 3 and 4, respectively. The H2(pc)I reflectance **spectra** agree qualitatively with those obtained earlier and reported as reflectance only.¹⁸ As noted above, the $H₂(pc)I spectra provide a convenient "background" for identi$ fication of metal-based transitions $(d_{z^2} \rightarrow p_z \text{ and } \pi \rightarrow d_{x^2-y^2})$ in the $M(pc)I (M = Co, Ni, Cu)$ series, since these transitions must be absent in $H_2(pc)I$.

Out-of-Plane Transitions. Figure 3a shows prominent peaks Out-of-Plane Transitions. Figure 3a shows prominent peaks
at 19.6 \times 10³ cm⁻¹ (D)⁴² and 30.0 kcm⁻¹ (F), consistent with peaks
identified earlier^{21,43} as I_3^- transitions ${}^1\Sigma_g \rightarrow {}^1\Sigma_u{}^*$ ($\sigma_g \rightarrow \sigma_u{}^*$) a a spin-orbit coupling component, respectively (The peak identification scheme follows that of Platt⁴² only for the Q, B, N, L, and C bands, which have been used by others for phthalocyanines;^{8,21} the remainder of our peak labels are arbitrary). The excellent agreement in energy, intensity, and band shape between these two peaks and the equivalent deconvoluted peaks in Co(pc)I and Ni(pc)I confirms our Gaussian deconvolution of the \sim (15–20) \times 10³ cm⁻¹ peaks in spectra of the latter complexes.²¹ Theoretical confirmation of an I_3^- transition near 20 \times 10³ cm⁻¹ comes from recent calculations predicting a strong needle-axis-polarized **peak** at 17.2 \times 10³ cm⁻¹ due to \bar{I}_{3}^{-37}

Peak E at 24.1×10^3 cm⁻¹ in Figure 3a could be due to either the pc macrocycle or I_3^- , since it shows no change from $H_2(pc)I$

to Cu(pc)I and also appeared at 25×10^3 cm⁻¹ in Co(pc)I.²¹ A new deconvolution of the Ni(pc)I out of plane spectrum based to Cu(pc)I and also appeared at 25×10^3 cm⁻¹ in Co(pc)I.²¹ A
new deconvolution of the Ni(pc)I out of plane spectrum based
upon the more accurate ${}^1\Sigma_g \rightarrow {}^1\Sigma_u^*$ transition parameters from
H₂(pc)I also shows a of Co(tbp)I (tbp = tetrabenzoporphyrin)⁴⁴ show a similar peak at 25.0×10^3 cm⁻¹. Tbp ligand orbital levels show experimental evidence⁴⁵ of being lower in energy than those in $M(pc)I$'s although calculations have shown them to be both higher³⁷ and lower³⁴ in the Ni case. It is thus difficult to predict if one would expect a difference for tbp ligand transitions. Careful examination of spectra of solids having I_3 groups oriented linearly as in the \dot{M} (pc)I's such as in tbaI₃, (bza)₂HI₃ and caf \cdot H₂O \cdot HI₃ (tba = tetra-n-butylammonium; $bza = benzamide$; caf = caffeine) shows a shoulder at \sim 25 \times 10³ cm⁻¹,⁴³ while solutions containing I_3 ⁻ show no such transition.⁴⁵ The peak also fails to appear in out of plane polarized spectra of $[Ni(tmp)]_2$ ReO₄ (where tmp = tetramethylporphyrin), which exhibits similar face-to-face stacking of macrocycles but does not contain I_3 ⁻⁴⁵ Since tmp is similar to both **pc** and tbp, one would not expect the peak to disappear due to this ligand change. It may be reasonably suggested that the lack of I_3 ⁻ caused the disappearance. We therefore propose that **peak** E is due to I_3 , but only in the solid state, probably from collective interactions between the I_3 - ions arranged colinearly. Peaks H and H' at 34.5×10^3 and 39.2×10^3 cm⁻¹ are weak peaks that also appear weakly in Cu-, Ni-, and Co(pc)I spectra. These are not predicted in calculations that we are aware of, **so** they remain unassigned at this time.

The out-of-plane Cu(pc)I absorbance spectrum, transformed from reflectance, is shown in Figure 4a. The intensity around 20×10^3 cm⁻¹ may be considered to arise from peak A at 18.8 \times 10³ cm⁻¹ and peak D at 19.8 \times 10³ cm⁻¹. The position and intensity of D agree with the analogous peak in $H_2(pc)I$, and thus \times 10³ cm⁻¹ and peak D at 19.8 \times 10³ cm⁻¹. The position and
intensity of D agree with the analogous peak in H₂(pc)I, and thus
this peak may be assigned as an I₃⁻¹ \sum_{β} \rightarrow ¹ \sum_{α} ¹ transition. intensity of D agree with the analogous peak in H₂(pc)I, and thus
this peak may be assigned as an $I_3^{-1}\sum_g \rightarrow {}^1\Sigma_u^*$ transition. Peak
A corresponds to the $12a_{1g}(d_{r2}) \rightarrow 6a_{2u}(\pi^*,p_z)$ transitions pre-
viously assign as such in this case also. Table I shows that the energy of this transition increases upon substituting Cu for *Co,* in qualitative agreement with the expected energies of the d_{z} orbitals in these metals and in agreement with recent calculations.³⁷ Peak E is assigned, as in $H_2(pc)I$, to I_3^- in the solid state. The peak at 30 \times 10³ cm⁻¹ appears larger than would be expected if it were due only to I_3^- as other 30 \times 10³ cm⁻¹ peaks have been.²¹ The intensity $(\epsilon_{\text{max}} \Delta \bar{\nu}_{1/2})$ of the experimental peak is 85 \times 10³ M⁻¹ cm⁻², while the expected intensity based upon the intensity of peak D and the relative intensities of peaks D and F in $H_2(pc)I$ (Figure 3a) is 33 **X lo3 M-I** cm-2. We thus propose that a second **peak** lies at 30 \times 10³ cm⁻¹ in addition to the I_3 ⁻ spin-orbit component. To guide our assignment of this additional transition, we will consider the $b_{2u}(\pi) \rightarrow b_{1g}(d_{x^2-y^2})$ transitions in Co(pc)I and Ni(pc)I.²¹ These transitions appear at 40.5×10^3 and 35.3×10^3 cm⁻¹, respectively, and the energy difference agrees with the expected energy levels of the $d_{x^2-y^2}$ orbitals.⁴⁶ Continuation of this trend to Cu(pc)I would place a transition near 30×10^3 cm⁻¹. We therefore have placed two transitions, F and G, under the 30×10^3 cm⁻¹ peak and assign place a transition near 30×10^{3} cm⁻¹. We therefore have placed
two transitions, F and G, under the 30×10^{3} cm⁻¹ peak and assign
them as an I_{3}^{-} spin-orbit coupling component and $3b_{2u}(\pi) \rightarrow$
 $11b_{2u}$ d $11b_{1g}(d_{x^2-y^2})$, respectively. Our orbital numbering follows that presented by Ellis et al.³⁷ for in-plane transitions involving these orbitals. It should be noted that no significant z-polarized transitions were calculated using the density of states method. This is possibly due to the use of monomers for the calculations. It **has** been shown experimentally that some metal-related transitions increase dramatically in intensity upon close approaches to neighbors in the solid state. $29,30$

Overviews of the out-of-plane transitions are presented in Figure 5a,b. The differences in the peak maxima of the \sim 20 \times 10³ cm⁻¹ peaks are clearly visible in Figure 5a. The MLCT transition $12a_{1g}(d_{r^2}) \rightarrow 6a_{2u}(\pi^*,p_r)$ and the LMCT transition $3b_{2u}(\pi) \rightarrow$ peaks are clearly visible in Figure 5a. The MLCT transition

⁽⁴²⁾ Platt, J. R. *J. Opt. SOC. Am.* **1953,** *43,* **252.**

⁽⁴³⁾ Mizuno, M.; Tanaka, J.; Harada, I. J. *Phys. Chem.* **1981,** *85,* **1789.**

⁽⁴⁴⁾ Liou, K.; Ncwcomb, T. A.; Heuer, W. **B.;** Heagy, M. D.; Thompson, J.; Musffilman, **R. L.;** Jacobsen, C. **S.;** Hoffman, **B.** M.; **Ibcrs,** J. **A.** To be submitted for publication in **Inorg.** Chem.

⁽⁴⁵⁾ Heagy, M. D. Unpublished **work.**

Figure 5. Out-of-plane absorbance spectra of M(pc)I's: (a) experimental Figure 5. Out-of-plane absorbance spectra of M(pc)I's: (a) experimental spectra; (b) MLCT ($12a_{1g}(d_{22}) \rightarrow 6a_{2u}(\pi^*,p_s)$) and LMCT ($3b_{2u}(\pi) \rightarrow$ $11b_{1g}(d_{x^2-y^2})$) Gaussian peaks. Key: $(-)$ Co(pc)I; (\cdots) Ni(pc)I; $(\$ $Cu(pc)I;$ $(---)$ $H_2(pc)I.$

 $11b_{1g}(d_{x^2-y^2})$ are shown for the three metallophthalocyanines in Figure 5b. In each *case,* the transition energies follow predictions from simple considerations of metal energy levels.

In-Plane Transitions. Transitions allowed when the electric vector is aligned parallel to the plane of the **pc** macrocycle are more numerous than those allowed out of plane. *As* in porphyrins also,' the principal features are prominent visible transitions at \sim 15000 cm⁻¹ (^{4}Q) and large ultraviolet transitions at \sim 30000 cm-' **("B"** or 'Soret").

(1) Theoretical Models. The well-known four-orbital model of porphyrin rings^{6,7,38} which has been used for decades as a basis for interpretation of porphyrinic spectra begins with two a_{2u} and a_{1u} HOMO's, which in porphyrins are assumed to be nearly degenerate, and an e_g pair of LUMO's. The nearly identical energies of the $a_{1u}^{\dagger}e_{\bf g}^{\dagger}$ and $a_{2u}^{\dagger}e_{\bf g}^{\dagger}$ states allows sufficient configuration interaction (CI) so that one combination of excited states, the B state, is \sim 15 000 cm⁻¹ above the other, the *Q* state. Thus, the four-orbital model is energetically consistent with experiment. The CI in porphyrins results in the Q transition's being forbidden, which is consistent with Q typically being about $\frac{1}{10}$ the intensity of B in porphyrins. In phthalocyanines, on the other hand, the visible transitions are close to the same intensity as the Soret band in the ultraviolet. **The** explanation for this difference was found through extended Hückel calculations on porphyrins and phthalocyanines,46 which showed a much greater energy difference between a_{1u} and a_{2u} in a typical phthalocyanine (Zn(pc)) than for the corresponding porphyrin $(Zn(p))$ or tetrabenzoporphyrin (Zn(tbp)). This essentially eliminates CI for the two excited states $a_{1u}^1e_g^1$ and $a_{2u}^1e_g^1$, which removes the forbiddenness of the lower

energy transition, and thus the visible band is much larger in the **pc's.** The largest visible transition, still named Q, even though it is no longer a result of state mixing, was thus assigned by pc's. The largest visible transition, still named Q, even though
it is no longer a result of state mixing, was thus assigned by
Gouterman' as pure $a_{1u} \rightarrow e_g$, and the ultraviolet transition, B, It is no longer a result of state mixing, was thus assigned by Gouterman⁷ as pure $a_{1u} \rightarrow e_g$, and the ultraviolet transition, B, was assigned as pure $a_{2u} \rightarrow e_g$. It is interesting to note that the energies of *Q* and and thus the energy difference attributed to CI in the porphyrins is now a straight orbital energy difference in **pc's** according to this traditional interpretation.

Around the same time that Gouterman et al. were developing their models, a well-conceived semiempirical model was presented for Cu(p),⁴⁷ Cu(pc),³⁶ and H₂(pc).³⁵ This model differs significantly from Gouterman's model in that several electronic transitions are predicted for each of the several regions (Q, B, N, L, C) which Gouterman had proposed **as** being individual electronic $transitions.^7$ This work has recently been used in interpreting absorption and MCD spectra of $Zn(pc)$.⁸ A more recent calculation comparing $Ni(tbp)$ (tbp = tetrabenzoporphyrin) with Ni(pc)³⁴ using a discrete variational X α (DVX α) method has proven useful in comparing energies of MLCT and LMCT transitions in Co(pc)I and Ni(pc)I.²¹ Very recently, Ellis et al.³⁷ using a density of states (DOS) variation of the $D\text{V}X\alpha$ method have calculated transitions in **pc's** that agree especially well with experiment. In our interpretation of the in-plane spectra for $Cu(pc)I$ and $H_2(pc)I$, as well as a reexamination of our $Co(pc)I$ and Ni(pc)I work, we will attempt to make assignments only **so** far as the calculations seem consistent. In many cases, especially in the higher energy UV region, specific assignment is still not feasible due to the multitude of transitions apparent.

(2) Cu(pc)I, Visible **Region.** Table I summarizes the experimental transition energies and the proposed orbital transition assignments for Co-, Ni-, Cu-, and $H_2(pc)I$ and the theoretical calculated energies of transitions with oscillator strengths of 0.2 or greater for Co-, Ni-, and Cu(pc).³⁷ Calculations by Henriksson et al. for Cu(pc) and H_2 (pc) are not included since specific assignments are not available.^{35,36} Figure 4b shows the transformed in-plane **spectrum** for Cu(pc)I with deconvolution into Lorentzian (Q) and Gaussian (all others) curves. Peak Q at 15.2×10^3 cm^{-1} is the peak closest to the calculated energies of 13.1×10^3 cm⁻¹ for the $2a_{1u}(\pi) \rightarrow 7e_g(\pi^*)$ (E_u) transition³⁷ and 18.4 \times 10³ cm⁻¹ for the $2a_{1u}(\pi) \rightarrow 7e_g(\pi^*)$ (E_u) transition³⁶ and 18.4 × 10³ cm⁻¹
for an unspecified E_u transition.³⁶ This peak has been assigned
as $a_{1u} \rightarrow e_g$ by Gouterman et al.,⁴⁸ and it is thus consistent to assign
m for an unspecified E_u transition.³⁶ This peak has been assigned
as $a_{1u} \rightarrow e_g$ by Gouterman et al.,⁴⁸ and it is thus consistent to assign
peak Q as $2a_{1u}(\pi) \rightarrow 7e_g(\pi^*)$. Peak R at 18.0×10^3 cm⁻¹ has
had an un had an uncertain history, having been proposed to be either a vibronic component of the Q band⁴⁹ or a splitting of Q due to a lowered site symmetry.^{21,48,50} (This latter effect is to be distinguished from a lowered molecular symmetry as appears in H₂(pc), which is D_{2h} rather than D_{4h} as in M(pc's).) In D_{4h} systems, up to three peaks in this region have been reported in room-temperature studies, $8,51$ traditionally labeled as $Q(0,0)$ (the peak labeled herein as Q), Q(1,0), and Q(2,0), since it was believed that the extra one or two peaks to the blue of Q were vibronic components of the electronic transition at Q. Low-temperature studies of both porphyrins and phthalocyanines⁵²⁻⁵⁵ have shown numerous vibrational peaks to exist under the three envelopes in question demonstrating that the labels **(O,O), (l,O),** and (2,O) do not accurately represent the nature of these peaks. In addition, several experimental^{51,56,57} and theoretical^{36,37} studies have proposed that at least one additional electronic transition resides in the

- **(47) Rm, B.; Sundbom, M.** *J. Mol. Specrrosc.* **1970, 36, 8.**
- **(48) Edwards, L.; Gouterman, M.** *J. Mol. Specrrosc.* **1970, 33, 292.**
- **(49) Marks,** T. **J.; Stojakovic, D. R.** *J. Am. Chem. Soc.* **1978,** *100,* **1695.**
- **(50) Day, P.; Scregg, G.; Williams, R. J. P.** *J. Chem. Phys.* **1963, 38, 2778.**
- **(51) VanCott, T.; Rose, J.; Misener, G. C.; Williamson, B.; Schrimpf, A.; Boyle, M.; Schatz, P.** *J. Phys. Chem.* **1989,** *93,* **2999. (52) Radziszewski, J. G.; Waluk, J.; Michl, J.** *J. Mol. Specfrosc.* **1990,** *140,*
-
-
- 373.
(53) Fitch, P.; Haynam, C.; Levy, D. J. Chem. Phys. 1981, 74, 6612.
(54) Kooter, J. A.; Van Der Waals, J. H. Mol. Phys. 1979, 37, 1015.
(55) Huang, T.-H.; Rieckhoff, K. E.; Voigt, E. M. J. Chem. Phys. 1982, 77, **3424.**
-
- (56) Fitch, P. M.; Sharton, L.; Levy, D. H. J. Chem. Phys. 1979, 70, 2018.
(57) Metcalf, D. H.; VanCott, T. C.; Snyder, S. W.; Schatz, P. N.; Williamson, B. E. J. Phys. Chem. 1990, 94, 2828.

⁽⁴⁶⁾ Schaffer, A. M.; Goutennan, M.; Davidson, E. R. *Theoret. Chim. Acra* **1973. 30, 9.**

high-energy shadow of peak Q. In view of this, we have chosen not to use the $Q(1,0)$ and $Q(2,0)$ labels for peaks in this region since they are misleading. However we will use the traditional labels B, N, L, and **V** for segments of the **UV** region of the spectrum, with the caveat that we shall point out that multiple electronic transitions may lie under each of these latter regions. In view of the very different nature of the vibrational fine structure in regions \sim 15.3 \times 10³ cm⁻¹ and \sim 16.7 \times 10³ cm^{-1 56,57} and the similarity of these regions in both the vapor state⁴⁸ and solid state,²¹ it appears that the proposal of lowered site symmetry as the origin of R is not correct. Peak R is most likely due to a combination of vibrational overtones from Q and an additional electronic of R is not correct. Peak R is most likely due to a combination
of vibrational overtones from Q and an additional electronic
transition. Henriksson et al.³⁶ have proposed that a $\pi \rightarrow \pi^* E_u$
transition calculated to lie transition calculated to lie at 21.6×10^3 cm⁻¹ may be partly transition calculated to lie at 21.6 \times 10² cm ² may be partly responsible for the intensity to the blue of *Q*. Ellis et al.³⁷ calculate that the Sa₂₁(π) \rightarrow 7e₈(π ^{*}) lies at 15.4 \times 10³ cm⁻¹ fo with an oscillator strength, f, of 1.25 compared with $f = 2.04$ for the Q transition. This excellent agreement in relative energy between peaks Q and R $(2.6 \times 10^3 \text{ cm}^{-1})$ and the calculated values the Q transition. This excellent agreement in relative energy
between peaks Q and R $(2.6 \times 10^3 \text{ cm}^{-1})$ and the calculated values
for $2a_{1u} \rightarrow 7e_g$ vs $5a_{2u} \rightarrow 7e_g (2.3 \times 10^3 \text{ cm}^{-1})$ and the qualitative
accessment wi agreement with relative intensities indicates that it is reasonable to assign peak R as primarily $5a_{2u}(\pi) \rightarrow 7e_g(\pi^*)$.

agreement with relative intensities indicates that it is reasonable
to assign peak R as primarily $5a_{2u}(\pi) \rightarrow 7e_g(\pi^*)$.
Another $a_{2u} \rightarrow e_g$ transition, $4a_{2u}(\pi) \rightarrow 7e_g(\pi^*)$, was calcu-
lated³⁷ to lie at 23.5 × 10³ c other transitions were calculated to have similar energies and lated³ to lie at 23.5 \times 10³ cm⁻¹ in Cu(pc) with $f = 0.20$. Two
other transitions were calculated to have similar energies and
intensities: $2b_{1u} \rightarrow 7e_g$ at 25.5×10^3 cm⁻¹ with $f = 0.36$ and the
 $6e_0(\pi) \rightarrow$ 6ther transitions were calculated to have similar energies and
intensities: $2b_{1u} \rightarrow 7e_g$ at 25.5×10^3 cm⁻¹ with $f = 0.36$ and the
 $6e_g(\pi) \rightarrow 3b_{1u}(\pi^*)$ at 23.6×10^3 cm⁻¹ with $f = 0.36$. The ex-
posimental pa perimental peaks labeled as S and T may result from these three transitions. Largely because of good energy and intensity agreement in this region between calculation and experiment in the $Ni(pc)$ and $Co(pc)$ cases (vide infra), we are tentatively assigning peak S as $2b_{1u} \rightarrow 7e_g$ and T as $4a_{2u} \rightarrow 7e_g$ and $6e_g \rightarrow 3b_{1u}$. One of the latter transitions, of course, could easily reside elsewhere in the region above 25×10^3 cm⁻¹, since they are predicted to be weak transitions.

(3) **Cu(pc)I, &ret** Region. The large experimental in-planepolarized intensity between 28 and 45×10^3 cm⁻¹ apparently arises from several intense transitions. The calculations by Ellis et al.³⁷ predict six transitions in this region with oscillator strengths of 0.20 or greater, as noted in Table I. The peaks visible atop this region of absorption in phthalocyanines have traditionally been labeled as B, N, and $L^{42,48}$ Since there are many more than four transitions in this region, we will use these labels as referring to regions rather than specific transitions. In generating Gaussian deconvolution, we started with the four energies experimentally evident: the shoulder at 29.0×10^3 cm⁻¹, the large maximum at 31.0×10^3 cm⁻¹, and the two maxima at 35.0×10^3 and $37.5 \times$ **IO3** cm-'. The latter three peaks have been identified in numerous phthalocyanines as peaks B, N, and L, respectively, by Gouterman.⁴⁸ A fifth peak at 32.5×10^3 cm⁻¹ developed as a residual following subtraction of the other four. As will be seen in the Co-, Ni-, and $H₂(pc)I$ spectra, there is consistently a strong, dominant peak close to 30×10^3 cm⁻¹. As shown in Table I, the $6e_8 \rightarrow 4b_{2u}$ transition is predicted³⁷ to be uniformly intense and $6e_g \rightarrow 4b_{2u}$ transition is predicted³⁷ to be uniformly intense and
close to 32 × 10³ cm⁻¹ in all cases. This peak is known as the
Soret band but has been assigned by Gouterman⁵⁸ as 4a_{2u}(π) \rightarrow $6e_g(\pi)$. This is in fact the same transition as we assigned to peak R, since the orbitals are the highest occupied a_{2u} and lowest unoccupied e_e orbitals. Due to differences in orbital numbering related to valence electron counting, Ellis' $5a_{2u}$ and $7e_8$ orbitals are equivalent to Gouterman's $4a_{2u}$ and $6e_g$ orbitals, respectively. We have chosen not to characterize peak R as the Soret transition even though its orbital transitions agree with earlier assignments of the Soret band, since the nomenclature was attributed⁶ primarily to the strong 30×10^3 cm⁻¹ peak rather than to a specific orbital transition. Calculations by Henriksson et al.³⁶ attribute four to the strong 30×10^3 cm⁻¹ peak rather than to a specific orbital
transition. Calculations by Henriksson et al.³⁶ attribute four
x,y-polarized $\pi \to \pi^*$ transitions to the B region: two strong
transitions at $34.$ transitions at 34.5×10^3 and 35.3×10^3 cm⁻¹ and two weak transitions at 34.4×10^3 and 36.6×10^3 cm⁻¹. Recent experimental work on $Zn(pc)^{51}$ has also suggested more than one

transition in the B region. We are thus not the first to suggest transitions other than $a_{2u} \rightarrow e_g$ to the B region. Since the $5a_{2u}$ transition in the B region. We are thus not the first to suggest
transitions other than $a_{2u} \rightarrow e_g$ to the B region. Since the $5a_{2u}$
 $\rightarrow 7e_g$ has already been assigned to peak R, and the next higher transitions other than $a_{2u} \rightarrow e_g$ to the B region. Since the $5a_{2u}$
 $\rightarrow 7e_g$ has already been assigned to peak R, and the next higher

energy $a_{2u} \rightarrow e_g$ transition, $4a_{2u} \rightarrow 7e_g$, is predicted to be weak
 $(f = 0.2)$ $(f = 0.2)$, it seems reasonable to now reassign the Soret or B band at 31.0 \times 10³ cm⁻¹ in Figure 4b as being largely due to the 6e_g \rightarrow 4b_{2u} transition.

Peak U in Cu(pc)I is a relatively strong transition to the red of band B. A strong transition is predicted slightly to the blue of B by Ellis's calculations³⁷ as shown in Table I, the 6e_g \rightarrow $6a_{2u}(\pi^*,p_z)$ transition. Ellis et al. did not include metal p_z orbitals in these calculations, and thus we need to call upon some experimental results to consider the effect of not only individual atomic p_i 's but the effects due to overlapping p_i orbitals in a perimental results to consider the effect of not only individual
atomic p_z 's but the effects due to overlapping p_z orbitals in a
stacking arrangement on the predicted energy for a 6e_g \rightarrow 6a₂₄
transition. The fir transition. The first expectation is that combination with a p_z metal orbital would lower the $6a_{2u}$ level in the single molecule. Further suggestions of lowering come from a consideration of experimental results on the solid state vs an isolated solution or gaseous complex in analogous systems. In other square-planar transition-metal complexes with unsaturated ligands, i.e., Pt- $(CN)_4^{2-}$,²⁷,⁵⁹ Pd $(CN)_4^{2-}$,²⁶ Ni $(CN)_4^{2-}$,⁶⁰ and Ni(dmg)₂,²⁸ we and others have found that, as the metal complex planes stack closer together as a result of changes in cations, a peak assigned as a_{1g} (d_z) $\rightarrow a_{2u}(\pi^*,p_z)$ dramatically red shifts (by up to 19 \times 10³) **Example 18 a and 18 in nearby in The x₃-polarized** $e_g(d_{xzyz}) \rightarrow a_{2u}(\pi^*,p_z)$ **transition nearby** cm⁻¹). The x,y-polarized $e_g(d_{x^2y^2}) \rightarrow a_{2u}(\pi^*, p_z)$ transition nearby
in energy in solution shows about 25% of the red shift of the a_{lg}
 $\rightarrow a_{2u}$ transition.⁶⁰ We attribute part of the red shift to a lowering
of th \rightarrow a_{2u} transition.⁶⁰ We attribute part of the red shift to a lowering of the p_z orbital on the metal due to interaction along the metal chain. The same process appears likely in the $M(pc)I$ case, where a lowering of p_z due to an as yet undetermined mechanism (neither factor group splitting, exciton formation, nor band formation is alone sufficient to explain the mechanism) causes the $6a_{2n}$ orbital to be lower than in the single molecule case. Thus, we would alone sufficient to explain the mechanism) causes the $6a_{2u}$ orbital
to be lower than in the single molecule case. Thus, we would
expect the $6e_g(\pi) \rightarrow 6a_{2u}(\pi^*, p_z)$ transition to appear at a lower
energy than calculate therefore tentatively assigned as this transition.

(4) Cu(pc)I, High-W Region. The remainder of the **UV** absorptions, including bands N and L, also is expected to be due to several transitions. Henriksson et al.³⁶ predict four weak $\pi \rightarrow$ π^* transitions in the N band region, at 39.6 \times 10³, 39.7 \times 10³, 40.1 \times 10³, and 41.8 \times 10³ cm⁻¹ and several weak $\pi \rightarrow \pi^*$ transitions and one strong $\pi \rightarrow \pi^*$ transition in the L region. As a practical matter, though, it is difficult to assign calculated transitions to specific peaks when intensities are similar and energies close. Ellis et al.³⁷ have calculated that at least four transitions to specific peaks when intensities are similar and en-
ergies close. Ellis et al.³⁷ have calculated that at least four
moderate transitions, $5e_g(\pi, d_{xzyz}) \rightarrow 3b_{1u}(\pi^*), 6e_g \rightarrow 3a_{1u}, 3b_{2u}$
 $\rightarrow 8e_g$, and $2b$ Although the relative prominence of peak N suggests it is due \rightarrow 8e_g, and 2b_{lu} \rightarrow 8e_g fall between 32 × 10³ and 40 × 10³ cm⁻¹.
Although the relative prominence of peak N suggests it is due
to the 3b_{2u} \rightarrow 8e_g transition, calculated to have an oscillator strength of 0.95 (and this transition is also calculated to be the strongest one in this region for $Co(\mathbf{pc})$ and $Ni(\mathbf{pc})^{37}$, the similarity of energies and intensities for transitions in this region **(see** Table I) makes specific assignments difficult. We thus attribute peaks **V**, N, and L and the intensity just beyond 40×10^3 cm⁻¹ collectively to $3b_{2u} \rightarrow 8e_g$, $2a_{1u} \rightarrow 9e_g$, $2b_{1u} \rightarrow 8e_g$, and $5e_g \rightarrow 3a_{1u}$ transitions.

(5) Co(pc)I and Ni(pc)I Revisitation. Before interpreting the in-plane H_2 (pc)I spectrum, it seems reasonable to reiterate and modify *our* earlier **assignments** of the Co(pc)I and Ni(pc)I in-plane spectra²¹ in light of the above discussion. In both $Co(pc)I$ and Ni(pc)I, whose in-plane spectra are shown in Figures 6 and 7, respectively, the assignment of the lowest energy in-plane transition, peak Q, as $a_{1u}(\pi) \rightarrow e_g(\pi^*)$ is confirmed as a $2a_{1u}(\pi)$ 7e_g(π^*) transition. The next higher energy peak at \sim 17.7 \times 10³ sition, peak Q, as $a_{1u}(\pi) \rightarrow e_g(\pi^*)$ is confirmed as a $2a_{1u}(\pi) \rightarrow 7e_g(\pi^*)$ transition. The next higher energy peak at $\sim 17.7 \times 10^3$ cm⁻¹, R, needs reassignment as a $5a_{2u} \rightarrow 7e_g$ transition in both cases. The (20 evidence for two small transitions, peak S at 24×10^3 and peak T at 26.5×10^3 cm⁻¹ with peak S of lower intensity than peak

(59) Yersin, H.; Gliemann, G. Ann. N.Y. Acad. Sci. 1978, 313, 539.
(60) Musselman, R. L. To be submitted for publication in Inorg. Chem.

T in both cases. This relationship of energies and intensities agrees with the calculations of Ellis et al.³⁷ for the $2b_{1u} \rightarrow 7e_a$ (at (21.5) $f = 0.4$) \times 10³ cm⁻¹, $f \approx 0.35$) and $4a_{2u} \rightarrow 7e_g$ (at (27.9 \pm 1.0) \times 10^3 cm⁻¹, $f \approx 0.61$) transitions, and thus it is reasonable to assign ± 0.4) × 10³ cm⁻¹, $f \approx 0.35$) and $4a_{2u} \rightarrow e_g$ (at (27.9 ± 1.0) × 10³ cm⁻¹, $f \approx 0.61$) transitions, and thus it is reasonable to assign peaks S and T as $2b_{1u} \rightarrow 7e_g(\pi^*)$ and $4a_{2u}(\pi) \rightarrow 7e_g(\pi^*)$, respect

In the region of $(28-45) \times 10^3$ cm⁻¹ we earlier proposed²¹ at least three transitions, the lowest energy transition being $a_{2u} \rightarrow$ $e_{\alpha}(\pi)$, which, as noted in the Cu(pc)I case, appears actually to be a small contribution to this region. The Ni(pc)I in-plane spectrum in Figure 7 shows **good** resolution of the Soret transition, be a small contribution to this region. The Ni(pc)I in-plane
spectrum in Figure 7 shows good resolution of the Soret transition,
peak B. In a more clear case than with Cu(pc)I, the 6e_g $\rightarrow 4b_{2\mu}$
transition was calcul cm-' region and may thus be assigned to peak B. While the Co(pc)I spectrum (Figure 6) is not resolved, a reasonable deconvolution yields a prominent peak B at 31×10^3 cm⁻¹, which Co(pc)I spectrum (Figure 6) is not resolved, a reasonable deconvolution yields a prominent peak B at 31×10^3 cm⁻¹, which we will also assign as $6\epsilon_g \rightarrow 4b_{2u}$, since Ellis's calculations for Co(pc) are very similar we will also assign as $6e_g \rightarrow 4b_{2u}$, since Ellis's calculations for
Co(pc) are very similar to those for Ni(pc). This leaves a hunt
for peak U, tentatively assigned in Cu(pc)I as $6e_g(\pi) \rightarrow 6a_{2u}$.
 $(-\pi n)$ In Co(pc)I ar (π^*, p_*) . In Co(pc)I, one sees a moderately weak peak showing for peak U, tentatively assigned in Cu(pc)I as $6e_g(\pi) \rightarrow 6a_{2u}$
(π^* , p_z). In Co(pc)I, one sees a moderately weak peak showing
as a slight shoulder at $\sim 30 \times 10^3$ cm⁻¹. The $6e_g \rightarrow 6a_{2u}$ transition in both Co(pc) and Ni(pc) was predicted to be less than half as intense as that in $Cu(pc),$ ³⁷ and peak U in Co(pc)I is consistent with that expectation. In Ni(pc)I, this transition may be hidden under peak B.

The remainder of the intensity, above peak B, is difficult to specify, since for both $Ni(pc)$ and $Co(pc)$ Ellis' calculations predicted four transitions of nearly equal energies (\sim 41 \times 10³ cm⁻¹) and intensities $(f = 0.45 - 0.74)$. In Co(pc), Gouterman⁴⁸ identified several numbered peaks attributed to the metals in this region. Ellis' calculations show, however, that $6e_s$ has only minor contribution from $d_{xz,yz}$ and that the principal metal contribution is at a much lower orbital energy, around the $5e_g$ orbital. Thus, most in-plane transitions in this region would have little or no metal character. We thus *see* no reason to differentiate characterizations for the Ni and Co cases and have chosen to continue the N and L terminology used by Gouterman for the other metallophthalocyanines. In the Co(pc)I spectrum it is reasonable to place several peaks under the high-energy side of the large (2744) **X** $10³$ cm⁻¹ absorption. Gouterman's spectra⁴⁸ show remarkable consistency with regard to the energis of **peaks** B, N, and L, beiig close to 30×10^3 , 35×10^3 , and 41×10^3 cm⁻¹, respectively, for 10 metallophthalocyanines. We do find slight shoulders at \sim 36 \times 10³ and \sim 40 \times 10³ cm⁻¹ in the Co(pc)I spectrum, so we have fit peaks labeled N and L at these locations, which are also consistent with Ellis' calculations. Two additional peaks emerge, V and W, consistent with the calculations. In the Ni(pc)I spectrum, the shoulder at 35×10^3 cm⁻¹, the peak at 36.5×10^3 cm⁻¹, and the shoulder at 40×10^3 cm⁻¹, the latter two being consistent with N and L locations, have been used to deconvolute this high-energy region. While a fourth transition is predicted³⁷ for this region, we are unable to justify additional peaks experimentally. No attempt is being made to assign any of the four transitions likely to contribute to this region, $3b_{2u} \rightarrow 8e_g$, $2a_{1u} \rightarrow$ imentally. No attempt is being made to assign any of the four
transitions likely to contribute to this region, $3b_{2u} \rightarrow 8e_g$, $2a_{1u} \rightarrow$
 $9e_g$, $2b_{1u} \rightarrow 8e_g$, and $5e_g \rightarrow 3a_{1u}$, to specific absorptions.
(6) H_2 (pc)I.

 $H₂(pc)$, our interpretation of the in-plane $H₂(pc)$ I spectrum will be based upon extrapolation of the Co, Ni, and Cu cases. The in-plane H_2 (pc)I transitions (Figure 3b) appear to be similar to those for Cu(pc)I in spite of the expected D_{2h} symmetry of $H_2(pc)I$, where two opposite pyrrole nitrogens contain the protons. An X -ray study¹⁸ shows no unusual structure for the phthalocyanine; the tetragonal crystal structure reflects the *D4h* molecular symmetry. It appears that the partial oxidation which allows straight stacking of macrocycles and the crystalline environment have minimized structural and electronic effects from the two hydrogens, unlike α , β , γ , δ -tetraphenylporphine, which crystallizes in a triclinic form⁶¹ and whose polarized in-plane spectra show distinct splitting of the x - and y -allowed ring transitions.⁴¹ On the basis of the structure, we would not expect to see significant splitting of peaks in H₂(pc)I, and we will assign transitions assuming a D_{4h} point group. Peak Q at 15.1×10^3 cm⁻¹ corresponds to the $2a_{1u}(\pi)$ \rightarrow 7e_g(π^*) Q transition, and peak R at 17.1×10^3 cm⁻¹ corresponds to the $5a_{2u}(\pi) \rightarrow 7e_g(\pi^*)$ transition. Peak R' is only slightly above the noise level but if real may be a vibronic component of R. We are resisting the temptation to attribute it to D_{2h} splitting, above the noise level but if real may be a vibronic component of
R. We are resisting the temptation to attribute it to D_{2h} splitting,
which, if present, would cause the $D_{4h} 2a_{1u}(\pi) \rightarrow 7e_g(\pi^*)$ transition
to become R. We are resisting the temptation to attribute it to D_{2h} splitting,
which, if present, would cause the $D_{4h} 2a_{1u}(\pi) \rightarrow 7e_g(\pi^*)$ transition
to become $a_u \rightarrow b_{2g}$ (allowed *y*) and $a_u \rightarrow b_{3g}$ (allowed *x*) and
the which, if present, would cause the $D_{4h} 2a_{1u}(\pi) \rightarrow 7e_g(\pi^*)$ transition
to become $a_u \rightarrow b_{2g}$ (allowed y) and $a_u \rightarrow b_{3g}$ (allowed x) and
the $5a_{2u}(\pi) \rightarrow 7e_g(\pi^*)$ transition to become $b_{1u} \rightarrow b_{2g}$ (allowed
x) and b_u to become $a_u \rightarrow b_{2g}$ (allowed y) and $a_u \rightarrow b_{3g}$ (allowed x) and
the $5a_{2u}(\pi) \rightarrow 7e_g(\pi^*)$ transition to become $b_{1u} \rightarrow b_{2g}$ (allowed
x) and $b_{1u} \rightarrow b_{3g}$ (allowed y). Since, in both cases, the split
transitions are a transitions are allowed and the overlap is equivalent, one would expect equal intensities for each pair. In the case of **R** and R', the great difference in intensities argues against these being a D_{2h} symmetry split pair. The same argument also holds for Q and R. Peaks **S** and T are also only suggested by the undulation in the experimental curve, but intensity is needed in that region consistent with their energies and band **shape.** *As* in the M(pc)I's, the experimental curve, but intensity is needed in that region
consistent with their energies and band shape. As in the M(pc)I's,
we will tentatively assign S and T as $2b_{1u} \rightarrow 7e_g$ and $4a_{2u} \rightarrow 7e_g$,
representively. respectively.

The large absorbance around $(30-35) \times 10^3$ cm⁻¹ is clearly the product of at least two transitions. We will assign **peak** B, as with the M(pc)I's, as $6e_g \rightarrow 4b_{2u}$. Peak N appears at first glance to be a good candidate for a symmetry-split equivalent transition to peak B. In α , β , γ , δ -tetraphenylporphine, however, where deviation from *D4h* symmetry and planarity (pyrrole N's up to 0.15 Å out of the plane) is significant,⁶¹ the splitting of the Soret transition was $\sim 2 \times 10^3$ cm⁻¹.⁴¹ In the case at hand, the energy difference between peaks B and N is greater than 5×10^3 cm⁻¹. It does not seem reasonable to expect that this difference is due to symmetry splitting given the structure of H_2 (pc) in H_2 (pc)I.¹⁸
We thus attribute peak N to one or more of the transitions $3b_{2u}$ to symmetry splitting given the structure of H₂(pc) in H₂(pc)1.¹⁶
We thus attribute peak N to one or more of the transitions $3b_{2u}$
 $\rightarrow 8e_g$, $2a_{1u} \rightarrow 9e_g$, $2b_{1u} \rightarrow 8e_g$, and $5e_g \rightarrow 3a_{1u}$. The latter is the
 $M(pc)I.³⁷$

Conclusions. The presence of the $a_{1g}(d_2) \rightarrow a_{2u}(p_2, \pi^*)$ transition characteristic of stacked square-planar transition-metal complexes has been confirmed in $Co(pc)I$ and $Ni(pc)I$ and found in $Cu(pc)I$. A second out-of-plane-polarized metal-related transition, $b_{2u}(\pi) \rightarrow a_{1g}(d_{x^2-y^2})$, has been found in Cu(pc)I in addition to Co- and Ni(pc)I, **as** reported earlier. Some in-plane transitions have been confirmed or reassigned as a result of recent calculations on Co(pc), Ni(pc), and Cu(pc): the low-energy Q band remains **as** confirmed or reassigned as a result of recent calculations on Co(pc), Ni(pc), and Cu(pc): the low-energy Q band remains as a $2a_{1u}(\pi) \rightarrow 7e_g(\pi^*)$ transition, but the neighboring higher energy Co(pc), Ni(pc), and Cu(pc): the low-energy Q band remains as
a $2a_{1u}(\pi) \rightarrow 7e_g(\pi^*)$ transition, but the neighboring higher energy
transition has been assigned primarily as a $5a_{2u}(\pi) \rightarrow 3e_g(\pi^*)$
transition the lowest en a $2a_{1u}(\pi) \rightarrow 7e_g(\pi^*)$ transition, but the neighboring higher energy
transition has been assigned primarily as a $5a_{2u}(\pi) \rightarrow 3e_g(\pi^*)$
transition, the lowest energy $a_{2u} \rightarrow e_g$ transition, rather than as a vibration or symmetry-split component of the Q band as has previously been suggested. Finally, the large intensity around 30 previously been suggested. Finally, the large intensity around 30 \times 10³ cm⁻¹ characteristic of porphyrin systems, the Soret band, has been identified as primarily the 6e_g \rightarrow 4b_{2u} transition rather has been identified as primarily the $6e_g \rightarrow 4b_{2u}$ transition rather than an $a_{2u} \rightarrow e_g$ transition.

Acknowledgment. This work was supported by the donors of the Petroleum Research Fund, administered by the American Chemical Society (R.L.M.), by the National Science Foundation, through the Inorganic, Bioinorganic, and Organometallic Chem**istry Program,** *Grant* No. CHE-8911215 (R.L.M.), and the Solid State Chemistry Program, Grant No. DMR-8818599 (B.M.H.), by the Northwestern University Materials Research Center, Grant No. DMR-8821571 (B.M.H.), and by The Camille and Henry Dreyfus Foundation (New Grant Program in Chemistry for Liberal *Arts* Colleges to R.L.M.). Also acknowledged is Franklin & Marshall College for summer Hackman Fellowships to D.E.R. and M.D.H.

Registry No. Cu(pc)I, 95179-25-2; H₂(pc)I, 138059-68-4.

⁽⁶¹⁾ Silvers, S.; Tulinsky, A. *J. Am. Chem.* **SOC. 1964,** *86, 927.*